Problem 2.9

Suppose the electric field in some region is found to be $\mathbf{E}=k r^{3} \hat{\mathbf{r}}$, in spherical coordinates (k is some constant).
(a) Find the charge density ρ.
(b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two different ways.)

Solution

One of the governing equations for the electric field in vacuum is Gauss's law.

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Solve for ρ and expand the divergence operator in spherical coordinates (r, ϕ, θ), where θ is the angle from the polar axis.

$$
\begin{aligned}
\rho & =\epsilon_{0} \nabla \cdot \mathbf{E} \\
& =\epsilon_{0}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} E_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(E_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial E_{\phi}}{\partial \phi}\right] \\
& =\epsilon_{0}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cdot k r^{3}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(0 \cdot \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}(0)\right] \\
& =\epsilon_{0}\left[\frac{1}{r^{2}} \frac{d}{d r}\left(k r^{5}\right)\right] \\
& =\epsilon_{0}\left[\frac{1}{r^{2}}\left(5 k r^{4}\right)\right] \\
& =5 \epsilon_{0} k r^{2}
\end{aligned}
$$

Integrate the charge density over the volume of a sphere of radius R to find the charge enclosed.

$$
\begin{aligned}
Q_{\text {enclosed }} & =\iiint_{x^{2}+y^{2}+z^{2} \leq R^{2}} \rho d V \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R}\left(5 \epsilon_{0} k r^{2}\right)\left(r^{2} \sin \theta d r d \phi d \theta\right) \\
& =5 \epsilon_{0} k\left(\int_{0}^{\pi} \sin \theta d \theta\right)\left(\int_{0}^{2 \pi} d \phi\right)\left(\int_{0}^{R} r^{4} d r\right) \\
& =5 \epsilon_{0} k(2)(2 \pi)\left(\frac{R^{5}}{5}\right) \\
& =4 \pi \epsilon_{0} k R^{5}
\end{aligned}
$$

Alternatively, use Gauss's law and the divergence theorem to find the charge enclosed.

$$
\begin{aligned}
Q_{\text {enclosed }} & =\iiint_{x^{2}+y^{2}+z^{2} \leq R^{2}} \rho d V \\
& =\iiint_{x^{2}+y^{2}+z^{2} \leq R^{2}}\left(\epsilon_{0} \nabla \cdot \mathbf{E}\right) d V \\
& =\epsilon_{0} \quad \iiint_{x^{2}+y^{2}+z^{2} \leq R^{2}} \nabla \cdot \mathbf{E} d V \\
& =\epsilon_{0} \oiint_{x^{2}+y^{2}+z^{2}=R^{2}} \mathbf{E} \cdot d \mathbf{S} \\
& =\epsilon_{0} \oiint_{x^{2}+y^{2}+z^{2}=R^{2}}\left(k R^{3} \hat{\mathbf{r}}\right) \cdot(\hat{\mathbf{r}} d S) \quad\left(\text { On the surface, } \mathbf{E}=k R^{3} \hat{\mathbf{r}} .\right) \\
& =\epsilon_{0} \oiint_{x^{2}+y^{2}+z^{2}=R^{2}}\left(k R^{3}\right) d S \\
& =\epsilon_{0} k R^{3} \oiint_{x^{2}+y^{2}+z^{2}=R^{2}} \oiint^{\oiint_{0}} d S \\
& =\epsilon_{0} k R^{3}\left(4 \pi R^{2}\right) \\
& =4 \pi \epsilon_{0} k R^{5}
\end{aligned}
$$

